Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Lancet Glob Health ; 12(5): e826-e837, 2024 May.
Article En | MEDLINE | ID: mdl-38614631

BACKGROUND: In October, 2017, WHO launched a strategy to eliminate cholera by 2030. A primary challenge in meeting this goal is the limited global supply capacity of oral cholera vaccine and the worsening of cholera outbreaks since 2021. To help address the current shortage of oral cholera vaccine, a WHO prequalified oral cholera vaccine, Euvichol-Plus was reformulated by reducing the number of components and inactivation methods. We aimed to evaluate the immunogenicity and safety of Euvichol-S (EuBiologics, Seoul, South Korea) compared with an active control vaccine, Shanchol (Sanofi Healthcare India, Telangana, India) in participants of various ages in Nepal. METHODS: We did an observer-blind, active-controlled, randomised, non-inferiority, phase 3 trial at four hospitals in Nepal. Eligible participants were healthy individuals aged 1-40 years without a history of cholera vaccination. Individuals with a history of hypersensitivity reactions to other preventive vaccines, severe chronic disease, previous cholera vaccination, receipt of blood or blood-derived products in the past 3 months or other vaccine within 4 weeks before enrolment, and pregnant or lactating women were excluded. Participants were randomly assigned (1:1:1:1) by block randomisation (block sizes of two, four, six, or eight) to one of four groups (groups A-D); groups C and D were stratified by age (1-5, 6-17, and 18-40 years). Participants in groups A-C were assigned to receive two 1·5 mL doses of Euvichol-S (three different lots) and participants in group D were assigned to receive the active control vaccine, Shanchol. All participants and site staff (with the exception of those who prepared and administered the study vaccines) were masked to group assignment. The primary immunogenicity endpoint was non-inferiority of immunogenicity of Euvichol-S (group C) versus Shanchol (group D) at 2 weeks after the second vaccine dose, measured by the seroconversion rate, defined as the proportion of participants who had achieved seroconversion (defined as ≥four-fold increase in V cholerae O1 Inaba and Ogawa titres compared with baseline). The primary immunogenicity endpoint was assessed in the per-protocol analysis set, which included all participants who received all their planned vaccine administrations, had no important protocol deviations, and who provided blood samples for all immunogenicity assessments. The primary safety endpoint was the number of solicited adverse events, unsolicited adverse events, and serious adverse events after each vaccine dose in all ages and each age stratum, assessed in all participants who received at least one dose of the Euvichol-S or Shanchol. Non-inferiority of Euvichol-S compared with Shanchol was shown if the lower limit of the 95% CI for the difference between the seroconversion rates in Euvichol-S group C versus Shanchol group D was above the predefined non-inferiority margin of -10%. The trial was registered at ClinicalTrials.gov, NCT04760236. FINDINGS: Between Oct 6, 2021, and Jan 19, 2022, 2529 healthy participants (1261 [49·9%] males; 1268 [50·1%] females), were randomly assigned to group A (n=330; Euvichol-S lot number ES-2002), group B (n=331; Euvichol-S ES-2003), group C (n=934; Euvichol-S ES-2004]), or group D (n=934; Shanchol). Non-inferiority of Euvichol-S versus Shanchol in seroconversion rate for both serotypes at 2 weeks after the second dose was confirmed in all ages (difference in seroconversion rate for V cholerae O1 Inaba -0·00 [95% CI -1·86 to 1·86]; for V cholerae O1 Ogawa -1·62 [-4·80 to 1·56]). Treatment-emergent adverse events were reported in 244 (9·7%) of 2529 participants in the safety analysis set, with a total of 403 events; 247 events were reported among 151 (9·5%) of 1595 Euvichol-S recipients and 156 events among 93 (10·0%) of 934 Shanchol recipients. Pyrexia was the most common adverse event in both groups (57 events among 56 [3·5%] of 1595 Euvichol-S recipients and 37 events among 35 [3·7%] of 934 Shanchol recipients). No serious adverse events were deemed to be vaccine-related. INTERPRETATION: A two-dose regimen of Euvichol-S vaccine was non-inferior to the active control vaccine, Shanchol, in terms of seroconversion rates 2 weeks after the second dose. The simplified formulation and production requirements of the Euvichol-S vaccine have the potential to increase the supply of oral cholera vaccine and reduce the gap between the current oral cholera vaccine supply and demand. FUNDING: The Bill & Melinda Gates Foundation. TRANSLATION: For the Nepali translation of the abstract see Supplementary Materials section.


Cholera Vaccines , Cholera , Vibrio cholerae O1 , Male , Pregnancy , Female , Humans , Cholera/prevention & control , Cholera Vaccines/adverse effects , Nepal/epidemiology , Lactation
2.
Vaccine ; 41(42): 6206-6214, 2023 10 06.
Article En | MEDLINE | ID: mdl-37741760

BACKGROUND: Although maintaining vaccines in a strict cold chain has cost and logistical implications in low- and middle-income countries, only a few vaccines have obtained approval for extended controlled temperature conditions (ECTC) application, which permits the administration of vaccines after storage outside of the cold chain for a defined period. We developed a methodology to evaluate stability data and calculate minimum release potency (MRP) in support of ECTC application. METHODS: The methodology is focused on statistical considerations consisting of stability data collection, statistical analysis plan, statistical modelling, and statistical report. It uses mock stability data from a hypothetical product and may serve as a helpful guide for other products. The statistical data analysis is performed using the R program which is an open-source program and validated using the SAS software. RESULTS: We developed a stability data testing scheme that included 24 lots with six-time points for up to 24 months under real-time and real condition (RT) in the cold chain samples stored at 2-8 °C and 12 lots with six timepoints for 14 days under ECTC samples stored at 40 °C. The log-transformed stability data met the linear regression assumptions and were poolable from representative lots with no significant lot variation. The linear regression analysis model with a common slope and intercept confirmed the stable antigen content over time under RT and ECTC by the mean regression line and 95% confidence interval. Based on the fitted models and the estimated coefficients, the antigen content value of 966 was derived as the MRP under RT for 24 months followed by 14 days under ECTC. CONCLUSION: The presented framework of statistical considerations, with practical methods and R program codes to perform statistical analysis, may serve as a guide for developing the CTC data for a vaccine's stability evaluation prospectively.


Vaccines , Temperature , Refrigeration , Drug Storage/methods , Drug Stability
3.
Hum Vaccin Immunother ; 19(2): 2239680, 2023 08 01.
Article En | MEDLINE | ID: mdl-37539816

Clinical trials in humans are vital to test safety and efficacy of new interventions and are accompanied with the complexity of related regulatory guidelines, stringent time frame and financial burden particularly when participants are children. Conducting clinical trials in low and middle income countries, where 90% of global diseases occur, increases the complexity as resources, infrastructures, and experience related to clinical trials may be limited in some countries. During the COVID-19 pandemic, due to multiple infection control measures such as social distancing, lock-down of the societies, and increased work load of hospital workers, conducting clinical trials seemed very challenging. Related guidelines and recommendations on clinical trials required updates to adapt the situation for ongoing clinical trials to be continued and new clinical trials to be initiated. In this review report, we described the lessons learnt through our experiences, challenges we faced, and the mitigation measures implemented as a response while conducting a phase III clinical trial on a non-COVID-19 vaccine at a government children's hospital during the COVID-19 pandemic. We hope this report will contribute in lowering the obstacles to allow the successful completion of future studies, in countries where people live with the burden of vaccine-preventable diseases.


COVID-19 , Humans , Child , COVID-19/prevention & control , COVID-19/epidemiology , Pandemics/prevention & control , Nepal/epidemiology , Infection Control , Clinical Trials, Phase III as Topic
4.
Vaccines (Basel) ; 9(12)2021 Dec 15.
Article En | MEDLINE | ID: mdl-34960228

Although measuring vaccine efficacy through the conventional phase III study design, randomized, double-blinded controlled trial serves as the "gold standard", effectiveness studies, conducted in the context of a public health program, seek to broaden the understanding of the impact of a vaccine in a real world setting including both individual and population level impacts. Cholera is an acute diarrheal infection caused by the ingestion of food or water contaminated with the bacterium Vibrio cholerae. Since the 1980s, either killed or live oral cholera vaccines (OCVs) have been developed and efficacy and effectiveness studies have been conducted on OCV. Although the results of OCV effectiveness studies sometimes showed outliers, the tendency seen is for effectiveness of the vaccine used in public health settings to be somewhat higher than estimated in randomized controlled trials due to the influence of indirect herd protection. Efficacy and Effectiveness studies both generate important information about the vaccine performance characteristics and its impact when used in real world populations at risk for the disease.

...